Chionoecetes opilio Pyrolysis: Characterization and Applications of **Crab Biochar**

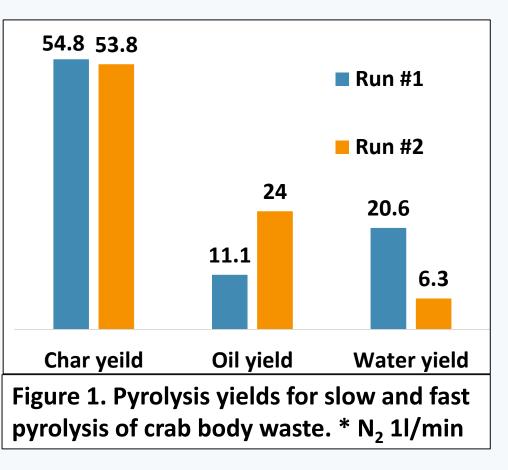
S.L. MacQuarrie^{*}, H. Armstrong, D. Richards, K. MacDougall, K. Kaur

Department of Chemistry, Cape Breton University, Sydney, Nova Scotia, Canada, B1P 6L2, Stephanie_Macquarrie@cbu.ca

Background

Louisbourg Seafoods Ltd. harvests and sells over 2200 tonnes of snow crab (Chionoecetes opilio) annually. The commercially desired parts are the legs and shoulders, while the bodies and remaining parts (approximately 1000 tonnes/year) are considered waste. Due the increasing costs of processing shell fish waste, this biomass is left to accumulate in local landfills. MacQuarrie is working towards finding environmentally responsible ways of dealing with the biomass, while also creating a new viable product. Crab based biochar was generated by slow and fast pyrolysis and fully characterized. FT-IR and XRD showed there was a significant amount of calcium carbonate in the crab biochar indicating significant potential for various applications from remediation to catalysis.

Pyrolysis



34		Higher Heating Value	Water	
	Pyrolysis	(MJ/kg)	Content (%)	рН
	1 (slow)	28.8	12.9	9.8
vder	2 (fast)	27.3	13.6	9.3
in)	N D			

Run 1: Slow Pyrolysis conditions: T: 450 °C, 20 °C s-1, residence time 60 min

Run 2: Fast Pyrolysis conditions: T: 575 °C, heating rate 70 °C s-1, residence time 5 min

Calcium carbonate rich

biochar generated from

crab waste shows promise in various

applications from

neutralization of acidic

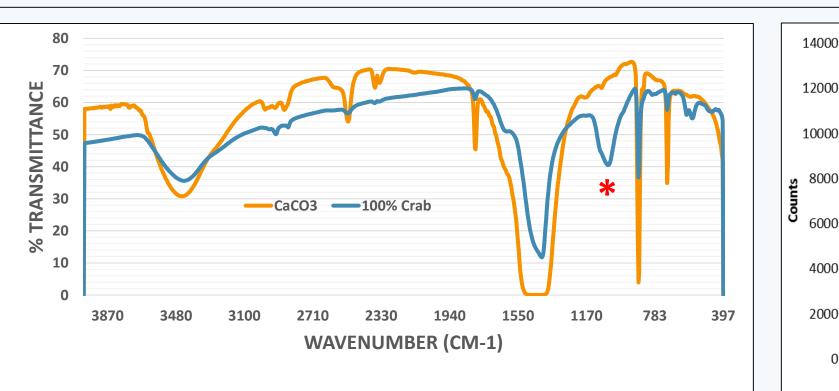
mine water to catalysis

Characterization

		BET analysis: Surface Area	Pore Volume	Pore Size
Crab Charcoal	рН	(m²/g)	(cm³/g)	(Å)
fast pyrolysis char	9.2	16.8	0.08	188.9

Applications

Acid Mine Water Neutralization

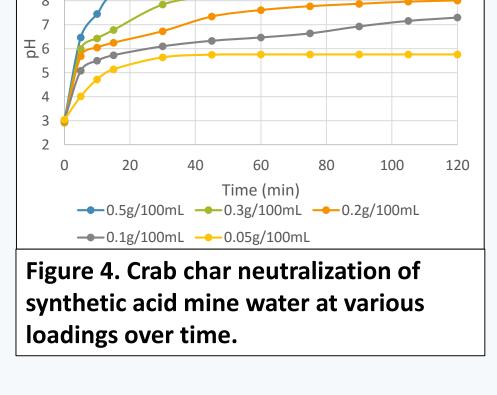


slow pyrolysis char

28.7

0.13

175.7



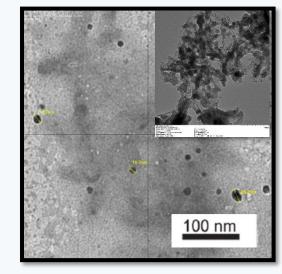
9.8

Figure 2. shows the FTIR spectra of Crab Char (blue) generated via fast pyrolysis compared to pristine calcium carbonate (orange). The peaks consistent with CaCO3 are labeled. Significant peak at 1100 consistent with CaO labeled with asterisk.

** Crab shell from Louisbourg Seafoods were dried at 100 °C, then ground with grinder, sieved through 80 meshes (0.18 mm) before use. Chitin and protein contents in crab shell were 35.34% and 31.5%, respectively.

14000 * CaCO ₃	(A)	(B)	Pa	arameter	Cral Cha
10000 -		The second secon		1oisture %)	6.2
 8000 - 6000 -			A	sh (%)	33.2
4000 - 2000 -	* * *	* \\		xed arbon	28.7
0 10 20	30 40 20	50 60 λ=1.54060	N P K		3.6 0.03 0.62
Figure 3. shows the XRD pattern for crab char consistent with CaCO3 in the form of calcite. Inset of crab biochar TEM images indicate areas of (A) order			C: Ⅳ	a 1g	23.2 0.96
-	h calcite and (I		p	Η	9.8

Acknowledgements


Funding for the project was provided by:

- Nova Scotia Business Inc. Productivity and Innovation Program
- Nova Scotia Business Inc. Natural Sciences and Engineering Research Council of Canada
- Louisbourg Seafoods Ltd.
- **Cape Breton University**

Scheme 1. Hydrogenation of butynediol with heterogeneous Pd-Zn-CaCO3 crab char catalyst.

Cat. Loading	Conversion	Selec	tivity
10 %	49	32	68
20 %	33	46	54

www.PosterPresentations.com